Self-Regulating Surface Chemistry for More Robust Highly Durable SOFCs

Clement Nicollet, Harry Tuller Massachusetts Institute of Technology

18th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting

Massachusetts Institute of Technology

Solid Oxide Fuel Cells

Main sources of cathode performance degradation

Formation of insulating silica blocking active sites

Silicon poisoning observed on YSZ/Pt system (*Hertz, Rothschild, Tuller, J. Electroceram. 22 (2009) 428-435*)

Formation of surface SrO blocking active sites *W. Jung, H.L. Tuller, Energy Environ. Sci., 2012, 5, 5370–5378* Cr volatile species: Formation of Cr_2O_3 blocking active sites

Review paper: S. P. Jiang, X. Chen Int. J. Hydrogen Energy **2014**, 39, 505

Initial Project focus

Model mixed conductor as cathode material – Pr doped ceria (PCO)

- Characterization techniques of surface chemistry

- Si poisoning on Pr doped ceria – previous work

- Presentation of the project

- First results

How to characterize surface poisoning?

Structure & morphology

No information on catalytic activity

Electrochemical Measurements

S.B. Adler, Chem. Rev. 2004, 104, 4791-4843

Drawback : Potential influence of metal contacts on surface exchange

Conductivity relaxation: Change in conductivity after a step in pO_2

Søgaard, Tuller et al., J. Electroceram. (2011) 27:134–142

The color of PCO depends on Pr valence

Films prepared by PLD

Optical Absorption \leftrightarrow oxygen non-stoichiometry

Possibility to characterize oxygen exchange reaction by optical measurements

J.J. Kim. S.R. Bishop, N.J. Thompson, D. Chen and H.L. Tuller, Chem. Mater. 2014, 26, 1374–1379

Optical Absorption in $Ce_{0.9}Pr_{0.1}O_{2-\delta}$

J.J. Kim et al., Chem. Mater. 2014, 26, 1374–1379

Si poisoning on PCO oxygen electrodes

Scavenging Si poison with La in PCO films

L. Zhao, S.R. Bishop et al. Chem. Mat. 27 (2015) 3065-3070

Scavenging Si poison with La in PCO films

L. Zhao, S.R. Bishop et al. Chem. Mat. 27 (2015) 3065-3070

La layer traps Si \rightarrow surface exchange rate recovered

Example of scavenging Si segregant with La in PCO films

L. Zhao, S.R. Bishop et al. Chem. Mat. 27 (2015) 3065-3070

How does it work? La₂O₃ react w/ Si ? La₂O₃ breaks Si layer?

 La_2O_3 sputtering \rightarrow not practical under operation

Exsolution Proposal

Source of scavenging elements to enable long term operation

Self-Cleaning Material

Study on powders

Objectives: Determination of La solubility in PCO Determination of exsolution thermal treatment

Study on films

Objectives: Study of La₂O₃ effect on surface exchange Study of their efficacy on Si and Cr poisoning

Study on real SOFC cathodes

Electrochemical performance and stability At realistic operating conditions

Study of exsolution mechanisms on powders samples

Selection of La amounts in and $Ce_{0.9}Pr_{0.1}O_{2-\delta}$ (PCO)

X-ray diffraction on synthesized powders

Exsolution on powder

Thermal treatment on PCO10 - 20% La at 700 °C for 50 h

Study on powders

Objectives: Determination of La solubility in PCO Determination of exsolution thermal treatment

Study on films

Objectives: Study of La₂O₃ effect on surface exchange Study of their efficacy on Si and Cr poisoning

Study on real SOFC cathodes

Electrochemical performance and stability At realistic operating conditions

Understanding the role of La on Si poisoning

Bringing Si in a controlled way \rightarrow Tetra Ethyl Ortho Silicate (TEOS) solutions with various concentrations

Effect of morphology of La layer (surface treatment instead of exsolution)

La thin film

Characterization of La impact on surface exchange rate w/ and w/o Si

What the La/Si reaction forms? (La silicates)

Study of exsolution on thin films

Exsolution of La₂O₃ with thermal treatment determined on powder samples

Morphology of films (epitaxial, polycristalline etc)

- Morphogy and composition of exsolved particles
- Effect of exsolved particles on surface exchange rate (w/ and w/o Si/Cr poisoning)

Study on powders

Objectives: Determination of La solubility in PCO Determination of exsolution thermal treatment

Study on films

Objectives: Study of La_2O_3 effect on surface exchange Study of their efficacy on Si

and Cr poisoning

Study on real SOFC cathodes

Electrochemical performance and stability At realistic operating conditions

Use of infiltration to produce highly efficient composites (1)

(1) C. Nicollet, PhD Thesis, 2016

Application on porous composite Electrodes

C. Nicollet et al. Int. J Hydrogen Energy, 2016, 41 (34) 15538-15544

Future work

Work on Si poisoning and La getter:

- Controled study of Si poisoning
- Analysis of La₂O₃ effect on suface exchange reaction

Proof of concept of exsolution as internal source of gettering element?

Application to other - cathodes materials? - poisoning elements? Thank you for your attention

Acknowledgement : NETL Award DE-FE0026109 Phase 1

La and Mn doping for Cr poisoning at TPBs

Element	charge	coordinence	lonic radius (Å)
Ce	+4	8	0.97
Gd	+3	8	1.053
Pr	+3	8	1.126
Pr	+4	8	0.96
La	+3	8	1.16
Mn	+2	8	0.96
Hf	+4	8	0.83

Ionic conductor Gd doped ceria (GDC) Mixed conductor Pr doped ceria(PCO)

Scavenging elements La \rightarrow efficient toward Si poisoning Mn \rightarrow expected efficiency toward Cr poisoning

Four systems to be studied: GDC-La, PCO-La, GDC-Mn, PCO-Mn

Limiting Sr segregation

Exsolution of Hf from GDC/PCO?

Risk: Hf can react with La to form $La_2Hf_2O_7$ (Insulating like $La_2Zr_2O_7$?) Smirnova et al., Journal of Crystal Growth 377 (2013) 212-216.

Alternative: using Sr-free materials! Pr_6O_{11}

Nicollet et al., Int. J. Hydrogen Energy 41 (34) (2016) 15538-15544

Surface etching?

Continuous Sr segregation

W. Jung et al., Energy Environ. Sci., 2012, 5, 5370–5378